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EFFECT OF AN APERTURE ON MEASUREMENT OF THE AXIAL
DISTRIBUTION FUNCTION IN A MAGNETICALLY
CONFINED PLASMA
by Roman Krawec

Lewis Research Center

SUMMARY

Theoretical calculations have been performed to determine the distortion in the
axial velocity distribution when a magnetically confined plasma passes through an
aperture. A general solution is obtained in terms of aperture length to radius ratio,
transverse to axial temperature ratio, and normalized length. Results are shown for
magnetic field strengths ranging from zero to infinity. It is found that the use of strong
magnetic fields allows the aperture to pass a plasma sample from which the true axial
" distribution function may be obtained.

The effects of distortion in the axial velocity distribution on a measurement of axial
temperature by taking the slope of the natural logarithm of current versus voltage is also
discussed. It is shown that the error in such a measurement can generally be kept below
30. 5 percent,

INTRODUCTION

The usual methods of finding the axial energy distribution of particles within a mag-
netically confined plasma consist of allowing a small sample of the plasma to pass
through an aperture and performing an energy analysis on the resulting low-density
plasma. This energy analysis may be done by using electrostatic fields alone (refs, 1
and 2) or by means of a combination of electric and magnetic fields (refs. 3 and 4). The
aperture may be placed at the end of a mirror machine (refs, 1 and 4), may be attached
to the body of a probe which is placed into the plasma (ref. 2), or can consist of a mag-
netically shielded duct (ref. 3) so that the particles are extracted transverse to the
magnetic field.



Analytical solutions of the change in the distribution function of particles passing
through the aperture have generally been restricted to treating the particles as having
rectilinear motion (refs. 1 and 2), in which case the effects of the magnetic field are
considered negligible, Another method, which also neglects magnetic fields, has been
to consider the aperture as a boundary separating two regions of different electric field
strength and then determining what effect these fields have on the distribution function
(refs. 3 and 5).

One exception is a recent paper by Anderson, Eggleton, and Keesing (ref. 6), who
treat the case of a point source of plasma in a magnetic field and show that the particle
distribution is strongly affected when the plasma passes through an infinitely thin aperture.

It is the purpose of this report to extend the calculations of Anderson, Eggleton,
and Keesing to the case of a uniformly distributed, magnetically confined plasma with
anisotropic velocity distribution which is allowed to pass through apertures of arbitrary
length and diameter. The general method of solution is followed by applications to
apertures of specific length and diameter, These solutions are then used to propose
criteria for aperture design which will give minimum distortion in the axial distribution

function.

THEORY
Formulation of Problem

Consider a flat plate of thickness L immersed in a uniform magnetic field which is
normal to its surface, Let the region to one side of this plate contain a plasma of known
velocity distribution and the other side be evacuated. The plate is considered to contain
a cylindrical aperture of radius R through which a portion of the plasma may flow, The
situation to be considered is depicted in figure 1.

The primary goal of this report is to find the axial velocity distribution of the parti-
cles emerging from the aperture while a secondary goal is to determine whether an
accurate measurement of axial plasma temperature can be obtained at the aperture exit,
The variables to be considered are the aperture dimensions, the magnetic field strength,
and the axial and transverse particle temperatures. The following assumptions are made:

(1) Any particle striking the bounding surfaces of the aperture is absorbed.

(2) The plasma is collisionless; that is, the mean free path is large compared with
the aperture dimensions,

(3) The regions under consideration are free of electrostatic fields,

(4) Particle absorption at the walls is the only loss mechanism,



—————-
Magnetic field

Figure 1. - Schematic of situation to be analyzed,

Because of the presence of a magnetic field, the charged particle trajectories are
helices spiraling around the magnetic lines of force. It is therefore convenient to re-
solve this helical motion into a circular motion about the particles' guiding center super-
imposed on the motion of the guiding center along the direction of the magnetic field.
This direction is taken as the z-axis. In the remainder of this report, the term particle
orbit, or simply orbit, will denote only this circular motion projected on the entrance
plane,

While the final objective is to calculate the number of particles emerging from the
aperture per unit time with axial velocities between v, and v, + de, the analysis will
first separate the particles into two classes depending on whether the gyroradius is less
than or greater than R. A transmission function for the flow of particles through the
aperture will be calculated as a function of gyroradius and axial velocity for each class
and the results will then be combined to compute a distribution function for the particles
emerging from the aperture in terms of the initial distribution assumed.

Particles entering the plane of the aperture with gyroradii in the range 0 =r_ <R
are placed in class I; while particles with gyroradii in the range R =r_ <« are placed
in class II, Class I particles can further be divided depending on whether their orbits
are wholly within (Class Ia) or partly within (Class Ib) the aperture, The classes are
summarized below,

Class|Rangeon r Description

Ia 0= rg <R |Orbit completely inside of aperture
b 0= rg <R |Orbit partly intersects aperture

R= rg < o {0rbit partly intersects aperture




The procedure followed herein will be to determine a transmission function which
can then be multiplied by a velocity distribution function and integrated to obtain the
velocity distribution function at the aperture exit or which can be multiplied by the
velocity distribution function fimes the velocity and integrated to determine a particle
flow at the aperture exit. The same results could be obtained by initially treating this as
a flow problem and calculating particle flow directly., The particular approach using a
transmission function was considered more useful.

Consider a uniform distribution of particles with a given gyroradius r_. The loca-
tion of the guiding centers of these particles on the x-y plane will also be uniformly dis-
tributed. Consider the particles within a plane slice of thickness dz such that the sur-
face density of their guiding centers is ¢. Now select an area dA in the plane of the
aperture such that any particle of gyroradius r_ whose guiding center lies within dA
will intersect the aperture with some or all of its orbit. The total number of such parti-
cles will be odA. If the length of the particle orbit projecting across the aperture is S,
the probability of that particle entering the aperture as it reaches the aperture entrance
plane is S/2rr_. The quantity OSdA/27TI‘g then represents the total number of particles
with gyroradii r_ which enter the aperture. Since the quantity S varies throughout A,
this expression must be integrated., The total number of particles of gyroradii r which
enter the aperture is thus o/2nr f S dA with limits of integration appropriate to the
value of r_ being considered. This area will be either circular or annular. In terms of
the radial distance from the center of the aperture p, the integral becomes

o pmax
N=— Sp dp (1)
r

g
Pmin
The limits of integration in this expression depend on the class to which the particles

have been assigned.
If the particles belong to class I (rg <R)

R+r R-r R4+1
N=2C 5 S g & 2 do + 2 &
= — o dp = — mrgp dp + — Sp dp (2)
r I

r
g g EJR-
0 0 rg

The integral whose limits are 0 to R - r_ corresponds to particles belonging to class Ia
while the remaining integral corresponds to particles belonging to class Ib.



If the particles belong to class II (rg = R)

T g+R

Sp dp (3)

@ @

R
g

Calculation of a Transmission Function

While traversing the aperture length L, each of the particles will complete a number
of orbits which depend on the strength of the magnetic field, the aperture length, and the
axial velocity of the particle. The orbital angle through which each particle rotates
while traversing the aperture is given by

p- A4BL (4)

v
m Z

where all the quantities used are defined in appendix A.

Therefore, the particles will travel through an arc of length r_# during the time it
takes to pass through the aperture. Referring to figure 2, not all the particles which
enter the aperture along the arc S will pass through, but only those which enter the
aperture on that portion of the path given by S - gr . Consequently, the equations cor-
responding to equations (2) and (3) for the exit plane of the aperture will be given by

Piu
2
Nippy = TR - 1)" + ;"— (S - 6r)p dp (5)
g _
R rg
for class I (rg < R) and
. Pay
Nthru = ;— (s - erg)P dp (6)
8Jp
l

for class II (r . = R). The limits have been changed from those used in equations (2)
and (3) to insure that the quantity S - 9r g will never be negative since negative values of



Figure 2. - Schematic depicting the portion of
its orbit (denoted by heavy line) that a
particle must be on in order to pass through
the aperture.

the integrand represent those particles that will impinge on the aperture walls, These
limits can be rigorously specified in terms of r_ and v,, as shown in appendix B,

In the first class (r_ <R), the integrand would range from 27 at the lower limit
to 0 at the upper limit if § were zero. For any given value of 9, the upper limit is
effectively reduced. The integral vanishes if 6 exceeds 2w,

In the second class (r = R), the integrand is zero at both limits when 6 is zero.
The effect of increasing 8 is to shrink both limits until at last they coalesce.

Since for any value of r_, the uniformity of spatial distribution implies that the total
number of particles which will arrive at the aperture entrance should be cmRz, a trans-
mission function for the aperture can be defined by dividing the expressions given by

equations (5) and (6) by (077R2) (see appendix C). This results in

-

2 p].l.l
R -r
TI:( g) + 1 (S -9r_)pdp r <R (7a)
R 2 € g
TR r
_rg
Pau
1
= S-0 d =R b
2 ( rg)p o Ty (Tb)
T rg

In order to carry the calculations any further, we need the relation between S, p,
and To Referring to figure 3,

S= gr (8)



Figure 3. - Schematic representation of rela-

tion between S, p, and fgr

The law of cosines gives

p2 + r2 _ RZ
coS 5? = ___g___ (9)
2 2
rgp
from which
a
S=2r cos'1<a p - ﬁ) (10)
g 1
p
where
2r
g
(R? - r?)
ag=— 8 (11D)
2 2r
g

Hence, if we momentarily neglect the limits, the problem of finding a closed form
expression for the transmission function consists of evaluating an integral of the form

b
b - 9 cos-! 29
[1]; = cos” (a;p--=)-0[pdp (12)
p
a



As shown in appendix C, the closed form expression for this integral is given by

2 2

a 2 1+4a.a 2a’p” -1 -2a.a
P 2 4a‘3 ‘/1 + 4a1a2
b
1/2
_a%p4 + (1 + Za.lalz)p2 - a§ (19)
- 1
2a1
a
Hence, the transmission function becomes
2
R-r p
. =< g) P Lo ie (r, <R) (14a)
R 7rR2 R—rg
p
-1 g2 (r_ =R) (14b)
TR

Using such a transmission function, it is then simple to take a known velocity dis-
tribution, for example, a two-temperature Maxwellian, and determine its shape at the
exit of the aperture.

Velocity Distribution at Aperture Exit

Let the particles in the bulk plasma have a velocity distribution function given by

2 2 2
n.m 1/2 m(vi+v®)/2kT, -mv_/2KT
F.(VX,V ,vz)= 0 m e Xy Le z z (15a)
1 y 2nkT | \27kT
ngm ;o \1/2 -mvf/zk'r N ~mv%/2kT
F.(vl,vz) = — e v, e z (15b)
1 kT, \27kT,



The axial velocity distribution ahead of the aperture is then given by

2 ® 2
n,m 1/2 -mv.,/2KT -mv’ /2KkT
F.(vz)=—g— m e z z e L lvl dv,
1 kT, \27kT
1 z
0
2 2
m 1/2 —mvz/Zsz —mvz/ZkTZ
=n, e = A1 e (16)
217sz

The corresponding expression for the exit of the aperture is

2 0 2
-mv</2KT -mv"/2kT
Fev)="_A4.¢ z z e L lvndv (1)

V'z KT 1 1 1

L

Current at Aperture Exit

The arrival rate of particles at the aperture entrance gives rise to a current which
can be expressed as

2
-mvz/2kTZ

_ 2
dIi(Vz) = TR"qA v, dv, (18)

At the aperture exit, the corresponding expression is

o0
7rR2qu1 —mvg/szZ —mvE/Zle
dlf(vz) = T e v, e v,n dvl dvZ (19)
L 0

I it were not for the effect of the aperture, the current could be analyzed in terms of
some retarding potential which cuts off particles having velocities less than v = 2qV/m.



In this case equation (18) can be expressed as

o]
9 —mv‘Z/ZkTZ
Ii(vz > Vmax) = TR"qA, e v, dv,

Vma_x

, [T, 1/2 -qV/kT,
= TR%qng | —= e (20)
2rm

The maximum current density occurs when V = 0 and is just the term in front of the

exponential in equation (20).

T

L(v,>v . )=1_ exp <1;‘1_V> (21)
Z

From which

qv _ R

e Inf .- Ii(vz > Vmax) (22a)
Z
(i> nI(v,>v . )=—% (22b)
dv, kTZ

Equation (22b) is the widely used relation which permits T, to be determined from
the slope of a retarding -potential curve. The question arises as to whether this same
procedure is applicable to the aperture exit. Unfortunately, a closed-form integration
is not possible for this case. One is required to resort to numerical methods to obtain
a set of retarding potential curves for a range of values of R, L, T,L’ Tz’ and B. It
appears possible to condense the requirements by a normalization process. Suppose we
normalize velocities in terms of their average values, the aperture radius in terms of
an average gyroradius, and aperture length in terms of the distance that a particle of
average axial velocity will travel while completing one cyclotron orbit. This leads to

the following normalized parameters:
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~ m
v_= v (23a)
zZ Vo, Z
Z
~ m
V, =4[/—V (23b)
L KT, 1
R=_9BR (23¢)
kal

__oBL (230)
211‘/2kaZ

It was also found convenient to normalize rg and p as follows:

r
?g = Eg (24a)
p=~£ (24b)
R
This permits rewriting the equations in the form
o0
~ 21TR2kTZ - ~
If = __‘m q / Ff(Vz)VZ dVZ (253.)
VYmax
o0
= o) oo\l/2 2 2 - o)
Fi.v_)=n e e v.ndv
f'2' "0 (277sz> e
0
'ﬁ: (1-7 )2 + 1 ['\I']‘Olu (r. <1) (25¢)
g s 1-r g

g
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Np ~J
=l[1~2u (r =1) (25d)
T p g
L
o [P+ -1\ 2 qfp -r, -1
I=p2c0s1 g _bp +sin1 g
~ e~ 2 ~y
2 2
pry Ty
~2.2]1/2
~4 r2+1 - (1—r2)
SR -4 pe - g (25€)
4 2 4

Vmax 1 /__ (25¢)
max kTZ

The limits of integration on p canbe expressed as

Plu= ?g cos <§> +\/1 - ?g sin? (%) (26a)

Py, =T _ €OS L) +4/1 -1 sin® (=2 (26b)
e (2> \/ g (2)

~ o~ 0 ~2 .20

p, =r_cos|Z)-4[1 -T% sin” [Z (26¢)
Loe (2) \/ & (2)

L_6 (27a)
v, 27
v
T =L
g =2 (27b)
R

The use of relations (27) allows the expressions for current and the distribution
function to be set up for computer integration for a range of values of L, TZ/Tl and
L/R.

12



Special Case B =0

At first glance, it might appear that the case B = 0 is treated by simply examining
equations (25) to (27) in the limit as B goes to zero. This, however, can lead to
erroneous conclusions because of the extensive manipulation involving quantities which
either go to zero or become unbounded when the magnetic field is set equal to zero,

We thus proceed to rederive the problem for the case when the magnetic field is
absent, The similarities to the case when a magnetic field is present will be pointed
out as they arise,

A particle with axial velocity v, will traverse the aperture length in a time 7
given by

r=1 (28)
Yz
During this time, the particle will also travel a transverse distance &, given by
6=vl~r=vl—1i (29)
Vg

Note that the quantity 8 corresponds to the arc length rge for the case B # 0 and,
in fact, is identical to it in value.

Suppose the position of the particle as it enters the aperture is taken as the center
of a circle of radius §. This circle defines the possible positions that every particle
of velocities v, and v | can have after traversing an axial distance L. (The initial
position of the particle plays the role of the guiding center for the previously treated
case, while the circle which defines the location of a particle at the aperture exit cor-
responds to the particle orbit.) Following the procedure established previously, we ask
what portion of this circle of radius 6 lies within the aperture. The entering particles
are again broken up into two major classes depending on the value of §, which are
summarized as follows:

Class|{Range on & Circle of radius &

Ia 0 =6 <R |Lies completely within the aperture
b 0 = 6 < R |Lies partly within the aperture
O |R =5 =2R |Lies partly within the aperture

13



(a) Class Ia; all particles enter. (b) Class Ib; o/2m enter.
QY

{c) Class IT; o/2m enter.

Figure 4. - Representation of the fraction of particles in each class
capable of leaving the aperture for the case B=0.

Referring to figure 4, the fractions of particles capable of leaving the aperture are
given by

Class Fraction
Ia All
2 2 2
27 @ 26pO
2 2 2
o | 2100 "R
2 w 25p0

A transmission function (similar to eq. (7)) can now be defined for the zero field case

and is given by

R
1-5\2 . 2 -1 pg+52_R2
=[—2) + =2 cos ~ | —————— ]pg dp, (30a)
R 2 26p
TR 0

14



where (0 = 6 <R)

R
1 -1 Pg + 52 - Rz
. cos {2 )p.dp (30b)
R‘?' 26p0 00
™= %5-R

The integral in equation (30b) is similar to one previously used and

where (R = § < 2R).
.can be expressed in closed form. This gives

2
[cos_l <-§-> + sin~1 (- é)- £ \/ 1- é__n(1 - 5)2 + E]
ng=(1-52+ L 2 2 4 2 (31a)

where (0 < £ < 1).

ot () ()<Yo 5]
- (31b)

where (1 = ¢ < 2) and

v
g=2_p L+ (32)
R sz
Thus, if 0 < £ < 2
. _cos™t g\ _sin’! é)_é L8
0 T 2 T 2 T 4 2

2
= gcos'1 (5-) - £ Vl _& (33)
e 2 T 4

The axial distribution function at the exit plane may now be written as

/2

~ Y
o \l/2 2
e Mg © v, dv (34)

15



where

y 2 (35)

The current-voltage characteristic is then found in the usual manner.

Limit as Magnetic Field Approaches Infinity

The limiting case of arbitrarily large magnetic fields may be treated by noting that
the orbital angle 6 always becomes greater than its maximum permissible value of 27
and the gyroradius goes to zero as the magnetic field approaches infinity. An examination
of equations (25c¢) and (26a) reveals that the transmission function is identically equal to

1, in which case

1/2 -v -v'/2 N
F(v.))=n m e Z e ¥ ¥ dv
z 0 27kT 1l
rear Z 0
B-0
~2
1/2 -v
=n m e Z (36)
211sz

This equation is immediately recognizable as the axial distribution function at the
entrance plane of the aperture. This is as it should be since the gyroradii of all particles
are zero, and therefore the particle motion is purely along the magnetic field lines, Thus
every particle that enters the aperture will reach the exit plane.

RESULTS AND DISCUSSION

Equation (25b) was set up for machine integration in terms of the normalized radius
R, the length to radius ratio L/R, and the transverse to axial temperature ratio T;/T,.

16



The parameters L/R and T l/TZ were varied between values of 0.1 and 10, and R
was varied over a sufficient range so that the curves approached the values taken on at
B=0and B - «, The case B = 0 (eq. (34)) was also calculated, the parameter of interest
being (L/R) VT.L/TZ‘
The computer programs used to perform the calculations are included in appendix D.
The distribution functions were normalized by dividing through by the factor
ng m/27rkTZ, and some typical results are presented in figure 5.
The effects of changing the normalized radius are presented in figure 5(a); this is
equivalent to changing the magnetic field since R is directly proportional to the strength
of the magnetic field. Specifically

420 000 B R

R= (electrons) (37a)
r1/2
L
_9800BR (protons) (370)
T1/2
1

where B is given in tesla, R in meters, and T in electron volts.

Looking further at figure 5(a) indicates that the distribution function lies near the
B -~ case when R >> 10 and lies near the B = 0 case when R << 1.0. In general, a
large value of R means that the aperture is much larger than the radius of gyration of
most of the particles (strong field case), and thus the distribution function will remain
relatively undisturbed. A small value of R implies that the motion of the particles
will be nearly rectilinear as they pass through the aperture (weak field case). In this
case, the distribution function will take on the characteristics of the B = 0 case.

Figures 5(b) and (c) give the results of changing Tl/Tz and L/R. The rather
complex effects obtained by varying either of these parameters are clearly indicated.

Further insight into the effects of varying either the length to radius or the tempera-
ture ratio may be gained by looking at some limiting cases of B = 0. These are pre-
sented in figure 6 for various values of the combined parameter (L/R) ‘/W For a
given value of this combined parameter the distribution function for nonzero magnetic
fields will fall between the curve for (L/R)'f'IT/T; equal to zero and the curve cor-
responding to the given value of this combined parameter.

As previously mentioned, the distribution function for large values of magnetic field
will be unchanged from that at the aperture entrance. Noting first the case
(L/R)YT /T, = 0.1, it is clear that this curve lies quite close to the undisturbed distri-
bution function for most values of the dimensionless axial energy and departs from it
only near the origin. (The case (L/R) T_L/TZ = 0 is the undisturbed distribution function.

17



Normalized distribution function

Dimensionless axial energy, e, /kT,

1
.6
4 Temperature
ratio,
2 Normalized R
: radius,
R
1 s (g ~cd
.06 2‘9]3
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<.222
.02
.01 =
006 —
b L 111 S B N | l
) -5 Lo L5 2.0 2.5 0 .5 L0 L5 2.0 2.5

Dimensionless axial energy, eZ/kTZ

(b} Effect of varying the transverse to axial temper-
ature ratio. Length to radius ratio, 2.0; normal-
ized aperture radius, 0, 8%9.

(a) Effect of varying the magnetic field (normat-
ized radius). Length to radius ratio, 2.0;
temperature ratio, 1.0.

Normalized distribution function

5.0

10.0

i I | | |
0 .5 Lo L5 2.0 2.5
Dimensionless axial energy, €, /KT,

{c) Effect of changing the fength to radius ratio.
Temperature ratio, 1 0; normalized aperture
radius, 0. 889,

Figure 5. - Typical distribution functions at the aperture exit showing the effects of varying the magnetic field, the tem-
perature ratio, and the length to radius ratio,



LIRYT 1T,
~0

Normalized distribution function

10.0

001 mo | |

0 1 2 3 4 5
Dimensionless axial energy, e, /KT,

Figure 6. - Change in normalized distribution
function due to variation of combined para-
meter LIvai 1T, for the case B = 0.

This is also the limiting case as the magnetic field approaches infinity for all values of
L/R and TJ_/TZ since particles move parallel to the B-field in this case.) Looking at
the other curves shows that increasing either L/R or TL/Tz has two effects

(1) The curve representing the distribution function moves further away from the
undisturbed case,

(2) The portion of the curve which is nonlinear on a semilogarithmic plot occupies a
larger range of values of dimensionless energy.

The most severe region of distortion is always near the origin and is a maximum for
large values of TL/Tz' All the distribution functions shown will reach a region of con-
stant slope for sufficiently large values of the normalized axial energy, where a true
temperature may be measured. This region may never be reached in practice. The
maximum value of the normalized energy reached will depend not only on the initial
particle current available but also on how quiescent the plasma in question is. Generally,
it may not always be practical to measure a current versus voltage curve over a range of
variation of current greater than 100, Taking these restrictions into account, tempera -
tures were evaluated by drawing a best fit straight line through the logarithmic current
versus voltage curve (on a plot of the distribution function such as fig, 6) in the region
of normalized energy from 4 to 5 and using its slope to determine a temperature. Using
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1.4
L3
1.2

11

Ratio of apparent to
true axial temperatures

1.0
1 1 10 100
LIRYT(TT,

Figure 7. - Effect of the combined para-

meter L/R‘/TJN/\;Z on measured axial

temperature. gnetic field strength, 0.

a range of values of normalized energy closer to zero will give rise to greater errors in
temperature measurement, while moving the region further away from zero will give rise
to smaller errors.

Figure 7, shows the ratio of the temperature that will be indicated by a measurement
to actual temperature for B = 0. The indications are that the measured temperatures
will be too large unless L/R is restricted to values less than 0.1. The measured tem-
peratures depart more and more as L/R is increased, reaching a maximum value of
1. 305 times the actual temperature. Continued increases in L/R have no further effect
on this measured temperature,

The variation of measured temperature with magnetic field (normalized radius) is
the subject of figure 8. It is clear that increasing L/R has the effect of bringing the
point where the measured temperature is equal to the true temperature nearer to the

Length to
radius
1.3~ [7;'0
AN
\ —
1.2 —_—1

Ratio of apparent to true axial temperatures

Normalized radius, R

Figure 8. - Effect of normalized radius on a measurement
of axial temperature, (The parameter R is directly
proportional to the strength of the magnetic field.)
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“origin. This indicates that comparatively small values of magnetic field will be effective
in obtaining an undistorted value of the temperature for large values of L/R.

The preceeding discussion gives preliminary criteria for aperture design (i.e., either
L/R must be small or the magnetic field must be chosen so that the aperture is operated
in the strong field region).

In either case, it is not considered good practice to make the radius of the entrance
apertures larger than the Debye length of a particle within the plasma, To establish an
upper limit to collector current, consider an aperture with radius equal to a Debye length,
The collected current is

nv 2

I=q 4"“’ R (38)

where Vay is the average axial velocity. With R equal to the Debye length, aperture
current is found to be independent of density and is

I=6.58 T, uA (39)

for electrons when the axial temperature is given in electron volts.
An aperture which is built following these suggested criteria should yield a plasma
efflux that truely represents the distribution function.

SUMMARY OF RESULTS

Expected changes in the axial distribution of velocities have been calculated for a
collisionless plasma immersed in a magnetic field when such a plasma is allowed to flow
through an aperture of finite length and diameter. The velocity distribution at the aper-
ture exit was obtained in terms of the length to radius ratio of the aperture, the trans-
verse to axial temperature ratio, and the normalized aperture length,

The distribution functions for selected values of the above parameters were pre-
sented along with the weak and strong magnetic field limits. The ratio of aperture length
to radius and the ratio of transverse to axial temperature were varied from 0.1 to 10. 0,
while the magnetic field was varied from zero to infinity. The following results were
noted:

1. For very strong magnetic fields, the distribution function remains undistorted re-
gardless of the values of the other parameters.
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2. Minimum distortion in the case of weak or intermediate values of magnetic field
occurs when the aperture length to radius ratio is very much less than one,

3. The maximum ratio of temperature indicated at the aperture exit to that at the
aperture entrance was 1. 305,

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, January 6, 1970,
129-02.
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APPENDIX A

entrance

SYMBOLS
constant, defined in Ii(vZ >V
eq. (16)
element of area
defined in eq. (11a)

I
defined in eq. (11b) max
magnetic field strength Kk
normalized axial velocity L

distribution function at ~

aperture exit L
velocity distribution func-

. m

tion at aperture

entrance N
axial velocity distribution

function at aperture

entrance th)
velocity distribution func- q

tion at aperture R

entrance ~

R
axial velocity distribution

function at aperture

exit (B = 0) g
integral, defined in g

eq. (12) S
‘integral, defined in

eq. (25¢) T,
current at aperture T 1

exit A%
current at aperture Vi

max)

current at aperture en-
trance due to particles
whose axial velocities

are greater than Viax

maximum current at
aperture entrance

Boltzmann constant
aperture length

normalized aperture
length

particle mass

total number of particles

of gyroradius r_ en-

tering aperture
particle number density
electronic charge
aperture radius

normalized aperture
radius

gyroradius
normalized gyroradius

length of particle orbit in-
tersecting the aperture

axial temperature
transverse temperature
retarding potential

component of velocity
along x-axis

23



=2

24

component of velocity
along y-axis

component of velocity
along z-axis

normalized axial velocity
transverse velocity

normalized transverse
velocity

constant, defined in
eq. (35)

transverse distance
particle travels while
traversing the aperture
length (B = 0)

transmission function

normalized transmission
function

transmission function
(B=0)

orbital angle

normalized distance

o

P1u

Pay

distance from center of
aperture to guiding
center of particle

normalized distance from
center of aperture to
guiding center of
particle

lower limit, eq. (26c)

distance from center of
aperture to guiding
center of particle
(B=0)

upper limit, eq. (26a)

upper limit, eq. (26b)

surface density of guid-
ing centers

time needed for particle
to traverse the aper-
ture length

angle defined in fig, 3



APPENDIX B

LIMITS OF INTEGRATION
Upper and Lower Limits for Class II Particles

Figure 9 shows the upper and lower limits on p for a typical class I particle at
various values of 6, As previously mentioned, particles with p > p, or p < Py will
make the integrand (S - r_g) negative, and are thus absorbed by the aperture wall, Refer-
ring to figure 10 and applying the law of cosines gives

2 2 2
r_+p -R
cos <Q> -8 "ul (B1)
2 ngpu, 1

o
(90 Q&
A YA

Figure 9. - Upper and lower limits for typical class II particle as function of orbital angle.

{a) Upper limit. {b) Lower limit.

Figure 10. - Upper and lower limits on distance from center of aperture
to quiding center of particle for class IT particles.

25



Solving equation (B1) for p, ; and using the notation that has been used in this report
H

6 2 2 _.2/¢
Po, =T_cos (Z)+ ‘/R - r_ sin <—> (B2a)
2u” g <2> g 9

0 2 2 _.2/p
p,=7r_ COS (_> - ‘/R - r_ sin <_> (B2b)
l g 9 g 2

The upper and lower limits coalesce when

result in

R=r_ sin <Q> (B3)
€ 2
This implies that the integral vanishes for values of 9 or r g such that
r_ sin ( ) >R (B4)
€ 2

Upper Limit of Integration for Class Ib Particles

The upper limit of integration on p for typical class Ib particles at various values
of @ are shown in figure 11, The upper limit is obtained in the same manner as the
limits were obtained for class II particles and is given by

0 2 2 . 2/6
= = R™ - sin© (2
Py = Tg €OS <2> + ‘/ Ty <2> (B5)
(a) 8= 2m py =R - Ry (bl 8= 37/2. 0=
A\ ~
(d) 8 = 7l2. (e} 8=0; pu-R+R

Figure 11. - Upper limit on distance from center of aperture to quiding center
of particle p for typical class Ib particle at various values of orbital angle 6.
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APPENDIX C

INTEGRATION OF THE TRANSMIS SION FUNCTION

Integration of Equation (12)

It was previously noted that the problem of finding a closed form expression for the

transmission function consists in evaluating an integral of the form

b
-1 29
I= 2cos " la,p--2)-6|lpdp
1 P
a
b
a 2
= 2 cos™1 <a1p ——E)pdp -t
a p 2

Consider the equivalent expression for the integral in equation (C1):

b -1
I'=/ x cos ~udx

a

a

Integrating by parts converts this equation to

b b

I'=§—cos'1u + —x—g}_ldx
2 2dx
a a 2¥1 -u

Hence, the original integral becomes

b b b
s\ 2
a1+—E p-dp
a2> sz p

I= p2 COS—1 (alp - =
P

(Cy

(C2)

(C3)

(C4)
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Concerning ourselves with the remaining integral

b
a
(al + —;> p2 dp b 2
o ) (alp + az) p dp
1/2 1/2
a.\2 —a2p4+(1+2aa)p2-a
2 1 172
1- alp D a
a P
b2
1 (alv + az) dv
2/, Vv
a
a b? a b2
_ vdv %2 / dv_
2 2 W 2 )2 W
a a
b2 .
_ 1+4a.a 2av -1 - 2a.a
_ \/; + 172 g2 1 172
2a 2
1 5 4a1 ‘/1 + 4a1a2
a
where
2
v=p
2.2 2
V=-avi+ (1 + 2a1a2)v - a2y
And finally

1/2
2 4 2 2
_ a 2 [-ap + (1 + 4a,a,)p -a]
I= p2 cos 1<a1p+——2)+9p 1 172 2

p

2 2a1

2 2

1+4aa, _1[2a0" -1 - 2243,

2
4a1 ‘/ 1+ 4a1a2

28
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(C5)

(C6a)

(C6b)
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Integration of Equations (5) and (6) for the Case =10

In deriving the transmission function, the statement was made that the number of
particles incident on the aperture was represented by onRz, independent of the value of
the gyroradius. The proof follows.

Taking the case with rg less than R, equation (5) may be written as

R+r
2 g
Nipra = or(R - rg) + ol R (C8)
-r
g
Substituting the value of I given in equation (C7)
1/2
N " )2 9 1 a, [—a%p4 + (1 + 29,1212),02 - a%}
= - 0s a.p--2y) -
thru on( rg +o0d{p ¢ 1P : 2a1
R+rg
22
1+4a.a 2aip” -1 - 2a,a
2
43.1 ‘/1 + 4a1a2 .R—r
g
Substituting the values of ay and a, into equation (C9) one obtains
511/2
2 2 2 2 2
- 4 2 R” -r
2 5 _y(P +ry-R P 2 2 p2 ( g>
N =on(R -r )"+ o{p” cos - E— R R S ) =
thru g 2pr, 4 g 9 4
+r
pz .2 _R? g
+REsin {8
2r R
g
R-r
g

omr(R - rg)2 +0 [(R + rg)2 cos ™1 1) -’ - rg)2 cos™1 (-1)
-0+ 0+R2 sin"l(1) - R? sin’l(-1)]
2

2
an(R-r)2+o —n(R-r)2+1R—+@—
g g 9 9

= orR2 (C10)
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For the case where T is greater than R, equation (6) becomes

R g+R
-R
g

Nihry = o1

0'[(R + rg)2 cos™1 1) - (rg - R)2 cos™1 (1) -0+ 0+ R? sin”] (1) - R2 sin”1 (-1)]

= <r1rR2

Thus for both ranges of r g’ the total number of particles impinging on the front sur-
face of the aperture comes out the expected value of omR” even when expressed in this

complex form,
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APPENDIX D

COMPUTER PROGRAMS

The programs that follow are written in standard FORTRAN IV language and do not

require any special functions other than those normally supplied.

Zero Magnetic Field

A flow diagram for the program which calculates the distribution function for the
zero magnetic field case (APERTO) is given in figure 12. This program varies the

Print
headings

Initialize
program

Read L/R
T,

QV-0

Calculate Vv,

FlQv = 0

SIMSN (Q, 5
Calculate B

SIMSN (0, y)
Calculate 8

FAQV) = A- B

Store
FlQw

|OV=QV+0.1|

Write Qv,
FAQVY, LIR, Ty/T.

Figure 12, - Flow diagram - program APERTO.,



normalized axial energy (denoted by QV within the program) from 0 to 5 in steps of 0. 1
and computes the aperture exit distribution function (eq. (34)) for each value of QV,
The integration over the transverse distribution function is performed by subroutine
SIMSN, which is a straightforward Simpson's 1/3 rule numerical integration, Although
the limits are supposed to vary from 0 to <, the upper limit is arbitrarily restricted
to a maximum value of 5 (exp(-25) is after all a rather small number),

A flow diagram for subroutine SIMSN is given in figure 13. This subroutine is de-
signed to repeatedly double the number of steps used in the integration until two succes-
sive values of the integral agree to within a specified number of digits.

32

SIMSN
Call y=flx)

2
K =0, set . 1§.¢ 1-£2 ] xe
number of steps fx) [2 s 'g' —a T

Calctlate ANS = g(y‘) *Yn* dodd+ 2 even)
permitted error

I

Calculate

step size

)

Initialze
program

|0dd=Y1“Y3+---+Yn-1|

lEven=y2+y4+. . +)’n-2|

Yes

ANS1 = ANS2

Calculate ANS1 Calculate Calculate
ANS2 ANS2
Double number
of steps ‘ l
Calculate Caiculate
DIFF DIFF

DIFF < ERROR
?
Yes

Double number
of steps

Number

Yes

of steps
<1007

Figure 13, - Flow diagram -



The complete program listings follow,

OO0 0000

10
610

600

[a X sz NaNaial onn

[z N uNuNal

500

210

220

200

605
3c0

COMPUTATIUN OF THE OISTRIBUTION FUNCTION FOR THE EFFECT OF AN

APERTURE ON A TWD

KK=0

TEMPERATURE MAXWELLIAN DISTRIBUT [ON WHEN B=0.

PRINT OUT HEADINGS.

WRITE(6s610)

FORMAT{ 1H1 + 10X +28HEFFECT OF APERTURE WHEN B8=0.///)

WRITE{6y600)

FORMAT{L1H +10X+2HQV»6Xe9HDIST o FNeo 26 Xe3HL/R6XySHTP/TZ///)

INITIALEZE PROGRAM AND SUPPLY REQUIRED CUNSTANTS.

COMMON GAMAGPI
PI=3.141593

SUPPLY INPUT DATA.

XLR IS THE APERTURE LENGTH TU RADIUS RATIOD.
TPZ IS THE TRANSVERSE TO AX1AL TEMPERATURE RATID.

READ{ 5+500) XLR

FORMAT(2F10.3)

END OF INPUT DATA,

FUNCTION.

TPz

START OF CALCULATION OF DISTRIBUT ION

DIMENSION DISTFNC 51)+.QVV{ 51)

DD 200 4=1. 51
XJ=J-1
QV=XJ/10.
avvidI=gv
vZI=SuRTiOV)

GAMA=2.828428*VZ/{SORT(TPZ)*XLR}

IF{GAMA .EQ. Q.

GO T 220
DISTFN(J)=0.0
GO TOo 200
A=EXP{—-QV)}

0l 6O TO 210

IF(A .LT. 1.0 E-30) A=0.0

EXTERNAL ARG
DIFF=0.0

[FIGAMA LLE. 5.) B=SIMSN(0.0+GAMA+4+ARG+DIFF)
IF(GAMA .GT. 5.) B=SIMSN(O.0¢5. ¢4 +ARGIDIFF)
IF{B «LT. 1.0 E-30) B=0.0

DISTFN(J)=A*8
CONT INUE
DO 300 N=1,51

WRITE(6, 605)0VVIND ¢DISTFNIN} s XLRsTPZ
FORMAT(LIH +F13.2sE15.442F10.2)

CONTINUE
KK=KK+1

IF(KK «LT. 99)
sToP

END

$IBFTC suBil

c
c
[

GO TUu 10

THIS FUNCTION (S THE TRANSVERSE DISTRIBUTIGON FUNCTIGN TIMES ETA.

FUNCTION ARGLY)

COMMON GAMA.PI
X=2.%Y/GAMA

ETA=12.%ARCOSIX/2.)—X*SORT (Lo —a25%X*X))}/P1
ARG=Y*ETA*ENP (~Y¥Y/2.)

RETURN
END

FXEXEXII LI EZTXIEZIFXIEZITIZIEEIXZEIEIITEZIIIXXIEZIZIEIEZIZILIEIIIETIIZIZITIIEITEETIETX

P> E>DP>

140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
310
320
330
340
350
360
365
366
367
368
369
370
380
390
395
400
405
410
420
430
470
580
590
610
615
620
630
640

10
20
30
40
50
55
60
70
80
90
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100
200

300

400

500

550

600

100

The equations used in evaluating the distribution function for the case of a finite
The flow diagram for the main program

FUNCTION SIMSNIAsBsNsFNyDIFF)

THE CALL SEQUENCE IS

EXTERNAL FN
DIFF=0.0

SIMPSON 1/3 RULE INTEGRATION.
A IS THE LOWER LIMIT,
SIGNIFICANT FIGURES THE ANSWER CAN BE EXPECTED TO BE CORRECT TO,
AND 100+#DIFF IS THE PERCENT DIFFERENCE BETWEEN THE LAST TWO0
COMPUTED VALUES UF THE INTEGRAL.

B THE UPPER LIMIT

ANS=SIMSN(A¢BsNosFNJDIFF)

FUNCTION, SIMSN{AsBsN+FN,DIFF)

EXTERNAL FN

K=0

HN=10.

ERROR=1.

DG 100 J=1.N
ERROR=ERROR /1 0.
H=(B-A)/HN
EVEN=0.0

0DD=0.0

NA=HN~-1la
NB=iN-2.

DO 300 KA=1eNA,2
XKA=KA

X=A+XKA¥H
0D0=D0D+FN (X}

DO 400 KB=2,NB,2
XKB=KB

X=A+XKB*H
EVEN=EVEN+FN(X)

IF(K «GT. 0) GO TO 500

K=K+l

ANSL=H*{FN(A) +FN{(B) +4.*00D+2. *EVEN) /3.

HN=2.%HN
GO TO 200

IF(K -6T. 1) GO TO 600

K=K+1

ANSZ2=H®{ FN (A} +FN(B )+4.¥0DD+2. *EVEN) /3.
IF{ANS2 .EQ. 0.0) GO YO 700
DIFF=ABS{ LANS1-ANS2) /ANS2}

IF{DIFF .LT. ERROR)

HN=24 *HN

60 To 700

IF(HN .LT. 100.) GU TO 200

ANS1=ANS2

ANS2=H¥*{FNILA) +FN{B ) +4.*0UDD+2. *EVEN) /3.
DIFF=ABS{(ANS1-ANS2}) /ANS2)
IFIDIFF .1 T. ERRDR) GO YD 700

G0 Ta 550
SIMSN=ANS2
RETURN

END

magnetic field are (25b) to (25¢), (26) and (27).
(APERT) is given in figure 14, The calculation of the distribution function proceeds via

subroutines FNI and FNA,
Subroutine FNI solves the relation

34
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Initialize
program

ICaIcuIate Ff| Calculate FfJ |Ca|culate Fs

Print QV,
fr, LR
UR, TyIT,

Figure 14, - Flow diagram - program APERT.
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and is appropriate when the value of v, is such that only class Ia particles can pass
through the aperture,

Subroutine FNA calculates eta times the transverse distribution function for the
general case and is depicted in figure 15,

Yes

Calculat
CalculateM @4'-. ;:lljna ¢

Yes

n=0 P—

2> sin'luﬁg)?

Calculate | yes No | Calculate
nlpy 1-Tg) 70, PP

Calculate
FNA

(CRETURN )

Figure 15, - Flow diagram subroutine FNA.
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Calcutate ?'g

XI=0
Calculate ng, A
Calculate
X1A
Calculate | |
X1A
Calculate C
Calculate
X1A
C<0? C=1
No
Ve
| Calculate
X18 Calculate 8
Yes
Calculate 8> 2n? 0=2m
X1B
No
Calculate
Calculate X1
X1B

(_RETURN ;

Figure 16. - Flow diagram subroutine X1

Figure 16 is a flow diagram for subroutine XI, which is a solution of the integral
used in obtaining eta (eq. (25e)). The program listings follow,
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OO0 MO0 N

10

610

[
c
c

[a NN aNakal

aoaon

c
C
C

600 0 FORMAT(LH +5X¢2HQV+6XeGHDIST. FN. +6Xe3HL/R L1 X92HLN,12X s 2HRN,

500

100

200

605
300

 COMPUTATION OF THE EFFECT DF AN APEKTURE ON A TWO TEMPERATJRE

MA

A MAGNFTIC FIELD IS ASSUMED PERPENDICULAR TO THE APERTURE PLANE.

XWELLTAN DISTRIBUTION FUNCTION.

THE NORMALTZED APERTUKE LENGTH=4T7200%B*L/SORTITZ)

B
{
T2

PR

I

IS THF MAGNETIC FIELD IN TESLA.
IS THE APEKRTURE LENGTH IN METERS.
IS THF AXIAL TEMPERATURE IN C.V.

INT DJT HFADINGS AND SET COUNTER.

KK=0
WRITF(0.610)

FORMATI1H1+20X+43HEFFECT UF APERTURE UN DISTRIBUTION FJUNCTION///)

WRITF (6,600)

12X+ 5HTP/TZ//7)

INITIALIZE PRUGRAM AND SUPPLY REWUIRED CONSTANTS.

RFAL LNJLR

COMMON LNeLKTZTP,PIsRNsVZ
PI=3.141593

KK=KK+1

INPUY DATA FOLLOWS.

LR IS THE LENGTH TU RADIUS ‘RATIU UF THE APERTURE.
LN IS THF NORMALIZED APERTURE LENSTH.
TZTP IS THE RATIO OF THE AXIAL AND TRANSVERSE TEMPERATJRES.

RFAD(S5.500)LR+LNSTZTP
FORMAT(3F10.4)
TPTZ=1./T7TpP

END OF INPUT DATA, START OF CALZULATION OF DISTRIBUTIDN
FUNCT ION -

RN IS THr NOKMALIZED APFKTURE RAOUIUS.

RN=2.%P] #*LN¥SOQRT(2.*TZTP) /LR
DIMFENSION DISTFNI51).0VV{51)
DN 200 J=1.,51

XJ=J-1

Qv=xl/10.

QVVIJ)=QV

VZ=SORT(QV)

CHECK T) SEE IS VvZ IS GT THAN MIN VALUE ROQRD.

JE(VZ .5T. LN} GJ TO 100

LRN=N

EXTFRNAL FNi

DIFF=0.0

IF(RN &LTa. 5¢) DISTFNIJ)=EXP{-WV}*SIMSNID.O4RNs4 FNI,DIFF}
TIF{RN .GE. 5.) DISTFN(J)I=EXP(—-QV}*SIMSN(0e0+5.+4sFNI.DIFF)
GO T3 200

CONTINUE

FXTERNAL FNA

DIFF=0.0

DISTEN(J)=EXP (—DV)*SIMSN{O-0+5.+5,FNALDIFF)
CONTINUE

DO 300 N=1.51

WRITF({64605) OVVIN)+OISTFN(N) eLRsLN+sRN,TPTZ
FURMAT(LH +F8.4+5E14%a4)

CONT INUFE

IF(KL .LT. 175) 30 TO 10

sTap

END

LT LLITIILIXILXTIXLTLELL L S _{ZZ_(ZSI.SZ.‘ISIZZ-‘S.‘Z.‘ZZ-‘.‘SZ.‘.I-".‘ZZ-‘I.SIZZ-‘ISSIZZ-‘ZIIZ-‘
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560
600
710
720
730
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750
760
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10

20

100

100
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300

400

50u

550

600

700

THIS FUNCTION IS THE TRANSVERSE UISTYRIBUTION FUNCTION TIMES
ETA #0OR (CLASS 1A PARTICLES.

FUNCTEON FNI(VT)

COMMIN LNJLR,TZTP+PT+RNVZ
REAL LNsLR

IFIVI 6T« 7.0) GO TU 10
Gu Tl 20

FNI=0.0

GO T 100

RG=VT /RN

FNI=VT#( Le—RG}*{1.—RGI*EXP(-VT*VT/2.)
CONTINUE

RETURN

END

FUNCTION SIMSN({A,B.N.FN,DIFF)

SIMPSIN 1/3 RULE INTEGRATION.
A IS THE L3WER LIMIT, B THE UPPZR LIMIT » N GIVES THE NJMBER OF
SIGNTFTLANT FIGURES THE ANSWER AN BE EXPECTED TO BE CORRECT VO,
AND 100#DIFF IS THE PERCENT DIFFERENCE BETWEEN THE LAST FwW)
COMPUTED VALUES OF THE INTEGRAL.

THE CALL SEQUENZF IS

EXTEKNAL Fn
NIFF=0.0
ANS=SIMSN(AW +N.FNJDIFF}

FUNCTTUN SIMSN(A,ByN+FNsDIFF)
EXTEINAL FN

K=0

HN=10.

FRROR =1.

DU LB J=1.N

ERKOR=FRRNKR /10

H={B8-A)/HN

FVEN=0.0

nHn=0.0

NA=HN-1.

NR=HN-2.

NIl 300 KA=1,NA,2

XKA=<A

X=A+XK A& H

ann=1n0+FENL{ X)

DIl 400 <B=2.NB,2

XKB=K8

X=A+XKB¥H

EVEN=EVEN+FNI{X)

IF(K «GT. 0) GD TO 500

K=K+1
ANSI=H¥(FN(A})+FNIB)+4.*0DD+2. *EVEN) /3.
EN=2 4 ¥ HN

GO T 200

IF{K .GT. 1) GO TO 600

K=K +1

ANS2=H%{ FN(A) +FN(B)+4.%0DD+2. *cVEN) /3.
DIFF=ABS( (ANS1-ANS2)/ANS2)
IFIDIFF .LT. ERRUR) GO TO 700
HN=2a%H\

IF(HN .LT. 100.) GU TO 200
ANS1=ANS2

ANS2=H*{ FN{A) +FN(B)+4.*0DD+2. *EVEN) /3.
DIFF=ABS( (ANS1-ANS2) /ANS2)
IF(DIFF .LTa ERRIR) GO TO 700
G TI 550

SIMSN=ANS?

RETURN

FND

PP >>DP
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THIS FUNCTIUN IS THE TRANSVERSE DISTRIBUTION FUNCTION TIMES
ETA FOR ALL PARTICLES WHOSE AXIAL VELOCITY EXCEEDS THE MINIvJM
REQUIREN.

ROU 1S THE UPPER LIMIT UF INTESRATIOUN.
ROL IS THE LOWER LIMIT OF INTEGRATIUN WHEN RG «GE. 1.

FUNCT ION FNA(VT)

COMMIN LNoLReTZTP4PI+RNyVZ

REAL LNJLR

EXTERNAL XI

RG=VT/RN

IF(RG .EQ. 0.0) 30 TO 35

GO T3 40

FTA=1.

G0 T) 100

THFTA=2.%P [ #¥LN/VZ

IF(THETA .GT. 2.¥Pl)} THETA=2.%PI

ROA=RG¥*COS{ THETA/2.)

IF{RG L T. 1.) GI TD 30

IF(THETA .GT. 2.FARSIN(l./RG)) GO TO0 10

ROB=1.-G¥*RG*SIN{THETA/2.)*SINITHETA/2.)

IF(RNB .LE. 0.0) GO TD 10

GO TH 20

FTA=0.0

GO T2 100

ROBRA=SQRT{(ROB)

ROU=ROA+RNDBA

ROL=ROA-R(OBA
0 IF(R5 .LT. la) ETA=XI(VT,ROUsRN)/PI#.5
1 +THETA*{ 1.-RG) *({1.-RG) /(2.%PI)

TF(RG «GEe 1o) ETA={XI(VT,ROU«RNI-XI (VT ,ROL,RN})/PT

IF(ETA .LT. 0.0) ETA=0.0

IF(ETA .GT. l.) ETA=1.

FNA=VT*ETA*EXP[-VT*VT/2.)

RETURN

END

FUNCTIUN XI{VT.ROsRN)

THIS FUNCTIUN GIVES THE VALUE OF THE INTEGRAL USED T0 CALCJLATE ETA
VT [S THE NURMALI7E) TRANSVERSE VELOCITY, RO THE LIMIT JF
INTFGRATTUN, THETA THE URBITAL ANSLE, AND RN THE NORMALIZED
APERTURE RADIUS.

COMMIN LNsLRsTZTP4PI.RN,VZ

REAL LN.LR

RG=VT /RN

IF(RG -EW. 0.0) GO TO 50
RGS=RG*RG
A=(RI*RI-KGS-1.1/12.%RG)

IF(A «LT. 0.0) XIA=-ARSIN(-A)
IF(A -GE« 1.) XIA=PI/2.

IF(A «GE. 0.0) XEA=ARSINIA)
B=(RI*RO+RGS-1.) /1 2.%RO*RG)

IF{B .GE. 1.) XIB=0.0

1F{-R .GE. 1.} X1B=RO*RNO*P1
IF{ARS(B) JLT. 1l.) XIB=RO*RO*ARCOS(B}
C=—RI*%4 /4 +RU*RI*(R5S+1e) /2.-{1.-RGS)*%2 /4.
IF(C .LT. 0.0) C=0.0
XIC=SQRTI(LC)

THETA=2.*PI*LN/VZ

IF(THFTA .Gl. 2.%Pl) THETA=2.%P]
XI=X1A+X 18- XIC-THETA*RO*RO/2.

GO T1 60

XI=0.0

CONTINUE

RETURN

END
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